
NASA Technical Memorandum 109150

//v -/8

fL/_;

Three-Axis Stabilization of Spacecraft
Using Parameter-Independent Nonlinear
Quaternion Feedback

Suresh M. Joshi

Langley Research Center, Hampton, Virginia

Atul G. Kelkar

NRC Fellow, Langley Research Center, Hampton, Virginia

September 1994

(NASA-TM-I09150) THREE-AXIS

STABILIZATION OF SPACECRAFT USING

PARAMETeR-INDEPENDENT NONLINEAR

QUATERNION FEEDBACK (NASA. Langley

Research Center) I0 p

G3/18

N95-13729

Unclas

0028222

National Aeronautics and

Space Administration
Langley Research Center
Hampton, Virginia 23681-0001



I' Ii_w,r



Summary

This paper considers the problem of three-axis attitude stabilization of rigid spacecraft.

A nonlinear control law which uses the feedback of the unit quaternion and the measured

angular velocities is proposed and is shown to provide global asymptotic stability. The

control law does not require the knowledge of the system parameters, and is therefore robust

to modeling errors. The significance of the control law is that it can be used for large-angle

maneuvers with guaranteed stability.

Introduction

Attitude control of a free-flying spacecraft has long been known as an important

problem, and has been the subject of many papers since the fifties and sixties [1,2,3]. It

is also a unique problem in dynamics because of the fact that the finite rotation of a rigid

body does not obey the laws of vector addition (in particular, commutativity) and, as

a result, the angular velocity of the body can not be integrated to give the attitude of

the body. The most widely used method of defining the rotation of a body between two

different orientations is an Euler angle description. A 3 × 3 direction cosine matrix (of

Euler rotations) is used to describe the orientation of the body (achieved by three successive

rotations) with respect to some fixed frame of reference. However, there is an inherent

geometric singularity in the Euler representation. This problem can be avoided by using a 4-

parameter description of the orientation [2,3,4], known as 'quaternions', which can be used

to describe all possible orientations. The quaternion approach uses Euler's theorem which

states that any rotation of a rigid body can be described by a single rotation about a fixed

axis. The advantage of using quaternions is that successive rotations result in successive

quaternion multiplications which are commutative. Some early results on the use of

quaternion feedback for attitude error representation and automatic control of the attitude

can be found in [1]. Quaternions were used for the simulations of the rotational motion of

rigid bodies as early as the 1950's [5]. The use of quaternion feedback for controlling robotic

manipulators can be found in [6,7], and for spacecraft control can be found in [8-11].



Various linear and nonlinearquaternion-basedcontrol lawshavebeenrecentlyproposed

[10, I1] for the attitude control of a single-body rigid spacecraft. However, the control laws

proposed in [10] require the knowledge of the system's moments of inertia and also constrain

the choice of the gain matrices. In [11], both model-dependent and model-independent

control laws were presented; however, the control laws used scalar gains.

In this note, a model-independent, nonlinear control law is presented which uses

quaternion feedback and symmetric and positive definite gain matrices. Global asymptotic

stability of the proposed control law is shown by using Lyapunov analysis. The Lyapunov

function used here for proving asymptotic stability does not need a cross term similar to the

one used in [11], and the proof is made much simpler.

Quaternion Feedback Control

The rotational equations of motion of a rigid spacecraft are given by:

&b+wx(Jw)=u (1)

where J is the 3 x 3 inertia matrix; _o is the 3 x 1 angular velocity vector; and u is the 3 x 1

vector of actuator torques. The objective of the control system is to bring the spacecraft to

the desired attitude (orientation) starting from any initial condition.

The orientation of a free-floating body can be minimally represented by a 3-dimensional

orientation vector. However, as stated previously, this representation is not unique. One

minimal representation that is commonly used to represent the attitude is Euler angles.

The 3xl Euler angle vector rl is given by : E(rl)O = w, where E(rl) is a 3x3 transformation

matrix. E(rl) becomes singular for certain values of rl; however, it should be noted that

the limitations imposed on the allowable orientations due to this singularity are purely

mathematical in nature and do not represent physical restrictions. The problem of singularity

in a 3-parameter representation of attitude has been studied in detail in the literature

[2,3,8,10,11]. An effective way of overcoming the singularity problem is to use the quaternion
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formulation (see[1]-[3]). The unit quaterniona is definedasfollows.

(2)
&3 z •

a = (al, a2, a3) T is the unit vector along the eigen-axis of rotation and 4, is the magnitude of

rotation. The quaternion is also subjected to the norm constraint:

_T_ + a_ = 1 (3)

It can be also shown [12] that the quaternion obeys the following kinematic differential

equations.

• 1

_= _(_ x _+_4_)

1 T--
_4 =-_

The quaternion can be computed [12] using Euler angle measurements (Eq. 4). The

equilibrium solutions of the open-loop system, given by equations (1), (4), and (5), can be

obtained by setting all the derivatives to zero. That is,

(4)

(5)

w x (Jw) = 0 (6)

w X_+Ot4W =0

wT-5 = 0

Taking the dot product of w with both sides of Eq. (7),

(7)

(8)

a4(w'"J) = 0

That is, either a4 = 0, or w = 0, or both are 0. If a4 ¢ 0, then w = 0. If a4 = 0, then from

(7) and (8), w x _ = 0, and w. g = 0, i.e., w = 0, or _ = 0, or both are zero. However, from

(3), a4 = 0 =_ _ ¢ 0; therefore, ,J = 0 when the system is in equilibrium. The system has

multiple equilibrium solutions: (_ss T, c_4ss), where, the subscript 'ss' denotes the constant

steady-state value.



Considerthe control law u, given by:

1 --

u = -_[(a + a4I)Gp + 7(1 - a4)1]-5 - Grw (9)

where Gp and Gr are symmetric positive definite (3 × 3) matrices; 7 is a positive scalar; and

represents the 3 x 3 cross product matrix of the vector _. Equation (9) represents a nonlinear

control law. The following result gives the closed-loop equilibrium solutions.

Lemma 1. Suppose Gp is symmetric and positive definite and 0 < )_M(Gp) < 27, where AM(.)

denotes the largest eigenvalue. Then the closed-loop system given by (1), (4), (5) and (9)

has exactly two equlibrium solutions: [_ = o_= 0, a4 = 1] and [_ = _o= 0, a4 = -1].

Proof.- The closed-loop system is in equilibrium when the derivatives in equations (1), (4),

and (5) are zero. Proceeding as in the open-loop case, the closed-loop equilibrium solution is

given by: _o= 0,_ = -_ss,oc4 -- a4ss. From equation (1), _o = 0 =_ u = 0. From equation (9), we

have

[(_+ a4I)Gp + 7(1 - a4)I]_" = 0 (10)

Pre-multiplying the above equation by _T and noting that the first term vanishes, we have

the following:

u = O =_'h T M'_ = O

where

The eigenvalues of M are given by:

M=a4Gp + 7(1 - a4)I (11)

,_i(M) = a4Ai(Gp) + 7(1 - c_4) = a4(Ai(Gp) - 7) + 3'- M is

singular when )q(M) = 0, i.e., when a4 = L-(-_-_" There are three different subcases that

need to be examined: (a) 0 < ,_i(Gv) < 7, (b) ,_i(Gp) = 7, and (c) 7 < ,_i(Gv) < 27. In subcases

(a) and (c),),i(M) = 0 only if la4] > 1, which is not feasible, since -1 _< a4 <_ 1. That means,

for subcases (a) and (e), hi(M) # 0 for any feasible values of a4. In subcase (b), i.e., when

)q(Gp) = 7, hi(M) = 7 > 0. Therefore, M is nonsingular, and _ = 0. Then, from equation (3),

we have: a4 = 1 or -1. (Note that, if )q(Gp) > 27 then there are feasible values of a4 for which

)q(M) = 0). "



(The symbo] ,, denotes the end of the proof.)

From Lemma 1, there appear to be two closed-loop equilibrium points corresponding to

_4 = 1 and a4 = -1 (all other state variables being zero). However, from equation (2),

a4 = 1 _ ¢ = 0, and a4 = -1 _ ¢ = 2r (or more generally 2nr), i.e., there is only one

equilibrium point in the physical space. We shall define the desired equilibrium state as:

5. = w = 0, a4 = 1. In order to make the origin of the state space the desired state, define

= (_4 - 1). Equations (4) and (5) can then be rewritten as:

• 1

5= _(w × 5.+ (_+ 1)w) (12)

1 T--
I)= -_ _ (13)

The system represented by equations (1), (12) and (13) can be expressed in the state-space

form as follows:

= f(x, u) (14)

where x = (a T, _,_T)T. Note that the dimension of x is 7, which is one more than the

dimension of the system. However, one constraint (Eq. 3) is now present. It can be easily

verified from (4) and (5) that the constraint (3) is satisfied for all t > 0 if it is satisfied at

t=0.

If the objective of the control law is to transfer the state of the system from one orientation

(equilibrium) position to another orientation (i.e., a rest-to-rest maneuver), then without

loss of generality, the target orientation can be defined to be zero. The initial orientation,

given by (5.(0),fl(0)) can always be defined in such a way that -1 _<_ _< 0 (i.e., 0 _< a4(0) _< 1),

corresponding to I¢1 _< _r.

Consider the control law given by:

1 -

u = -_[(5. + (f_+ 1)I)Gp - 7/3I]a - G,w (15)

The control law given by (15) was stated in [11]; however, conditions for the existence of the

closed-loop equilibrium solutions were not investigated, and stability proof was not given.



The following t.heoremestablishesthe global asymptotic stability of the physical

equilibrium state (the origin of the state-space)of the system.

Theorem 1. SupposeGp and Gr are symmetric and positive definite, and 0 < ),M(Gp) <

27. Then, the closed-loop system given by equations (1), (12), (13), and (15) is globally

asymptotically stable (g.a.s.).

Proof. Consider the candidate Lyapunov function

V = wTJw + -_TGp-_ + 7/32

V is clearly positive definite and radially unbounded with respect to the state vector

x = {_T,/3, wT}T. Taking the time derivative of V, we have:

(16)

_" = 2wr[--w x ( Jw) + u] + 2-5TGv(w x a + (/3 + 1)w) - ^t/3wT-5 (17)

Noting that the first term in li" is zero, and substituting for u from (15), after simplification,

we get: li" = -wTGr,0, i.e., 9 is negative semidefinite. 9 = 0 only when w = 0. Following the

same procedure as Lemma 1, it can be shown that V = 0 only at the two equilibrium points,

= w = 0,/3 = 0 (corresponding to a4 = 1) and g = w = 0,/3 = -2 (corresponding to a4 = -1).

Consistent with the previous discussion, these values correspond to two equilibrium

points representing the same physical equilibrium state. It can be easily verified, from

equation (16), that any small perturbation e in ¢_from the equilibrium point corresponding

to/3 = -2 will cause a decrease in the value of V (_ has to be > 0 because -2 _</3 _< 0). Thus,

in the mathematical sense,/3 = -2 corresponds to an isolated equilibrium point such that

1) = 0 at that point, and li" < 0 in a neighborhood of that point, i.e., _3= -2 is a 'repeller' and

not an 'attractor'. It has been already shown that V is negative everywhere in the feasible

state space except at the two equilibrium points. That is, if the system's initial condition

lies anywhere in the state space except at the equilibrium point corresponding to/3 = -2,

then the system will asymptotically approach the origin (x = 0); and if the system is at

the equilibrium point corresponding to/3 = -2 at t = 0 then it will stay there for all t > 0.
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However, this is the same equilibrium point in the physical space; hence, it can be concluded

by LaSalle's theorem that the system is globally asymptotically stable. •

Concluding Remarks

The problem of three-axis attitude stabilization of a spacecraft was considered. A

nonlinear quaternion-based feedback control law was given, and was shown to provide

global asymptotic stability. The control law does not depend on the knowledge of the

system parameters (i.e., moments of inertia), and is therefore robust to modelling errors and

parametric uncertainties.
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